FisicaPractica.Com
Física Práctica

Representación fasorial

La corriente alterna se suele representar con un vector girando a la velocidad angular ω. Este vector recibe el nombre de fasor. Su longitud coincide con el valor máximo de la tensión o corriente (según sea la magnitud que se esté representando). El ángulo sobre el eje horizontal representa la fase. La velocidad de giro ω está relacionada con la frecuencia de la señal.



Representación Fasorial


En corriente alterna se da que en muchas ocasiones, las tensiones y corrientes presentan desfasajes entre sí (distintas fases en un determinado momento). En los diagramas fasoriales esto se representa con un ángulo entre los fasores.

Representación Fasorial


Los fasores pueden representarse mediante números complejos, teniendo una componente real y otra imaginaria. Si únicamente queremos representar una señal alterna sin importar su fase respecto de otra podemos considerarla formada únicamente por una parte real y sin parte imaginaria. En este caso el ángulo es cero. Si en cambio nos interesa el ángulo de fase (normalmente cuando lo estamos comparando con otro fasor) lo indicamos según corresponda.

El igual que en los números complejos, los fasores pueden estar representados en forma binómica y polar (existen otras como la trigonométrica y la exponencial, pero utilizamos las dos primeras). En algunos casos nos conviene una forma de expresarlos y en otros casos será más simple hacer cuentas con la otra forma.


Forma polar
Los fasores suelen indicarse matemáticamente también en forma polar, es decir como un módulo y un ángulo. Por ejemplo la expresión:

V = 311 sen (2π 50 t + ¼ π)

Se puede representar como un fasor de la siguiente manera:
Representación Fasorial
V = 311 V
ω = 2π 50 (para una f = 50 Hz)
Φ = 45 ° (o ¼ π)

En forma polar se escribe como 311 (45°) V.

Forma binómica

Otra forma de expresar a un fasor o número complejo, es la forma binómica, es decir como: a + j b  siendo a la parte real y b la parte imaginaria.


Con las relaciones trigonométricas seno, coseno y tangente, podemos calcular las componentes de la forma binómica (a y b) a partir del módulo del fasor y de su ángulo (forma polar) o bien hallar el módulo del fasor y su ángulo a partir de la forma binómica.

Forma binómica a polar

Si tenemos el fasor dado en forma binómica y queremos conocer el módulo, lo calculamos como la hipotenusa del triángulo. El ángulo se calcula como el arco tangente del cateto opuesto sobre el adyacente.

Forma binómica a polar

Forma polar a forma binómica

Forma polar a binómica

Forma binómica = a + j b

Suma y resta de fasores

Para sumar o restar dos fasores es conveniente tenerlos en forma binómica, por lo tanto se hace la suma o resta componente a componente.

Suma en forma binómica

Multiplicacion y división de fasores

Es más simple hacerlas en forma polar. Se multiplican o dividen los módulos según corresponde y se suman los argumentos (para el caso de la multiplicación) o se los resta (para el caso de la división).

Multiplicación y división en forma polar






Seguir a FEM inducida en una espira girando en un campo
Volver a corriente alterna
Volver a home


© 2007 - 2014 FisicaPractica.com - Contenido registrado - Todos los derechos reservados