Física Práctica

Producto vectorial

El producto vectorial es una multiplicación entre vectores que da como resultado otro vector ortogonal a ambos.

Producto vectorial

Cálculo del producto vectorial a partir de coordenadas cartesianas

Dados dos vectores “a” y “b” como los siguientes:

Producto vectorial

El producto vectorial se expresa como un vector de tres componentes.

Producto vectorial

Las componentes se calculan de la siguiente forma:

Producto vectorial

La fórmula anterior se obtiene a partir de un determinante. Planteándose de esa manera es más fácil de recordar.

Producto vectorial

Cálculo del producto vectorial a partir de coordenadas polares

El módulo se calcula como el producto de los módulos de los vectores multiplicado por el seno del ángulo que los separa.

Producto vectorial

La dirección es sobre la recta ortogonal a ambos vectores, es decir que forma 90 grados con los mismos.

El sentido se calcula con la regla de la mano derecha, en donde el pulgar indica el sentido del vector resultado. Esto quiere decir que en el producto vectorial importa el orden en que se multiplican los vectores, ya que determina el sentido del vector resultado.

Propiedades del producto vectorial

El producto vectorial no es conmutativo. Sin embargo, el resultado es un vector igual pero de signo contrario.

Producto vectorial

El producto vectorial es distributivo con respecto a la suma de vectores.

Producto vectorial

Si el producto vectorial entre dos vectores es igual a cero y ninguno de los vectores es cero entonces ambos vectores son paralelos.

Producto vectorial

El producto vectorial de un vector consigo mismo es igual al vector nulo.

Producto vectorial

El producto de un vector por un escalar es asociativo con el producto vectorial.

Producto vectorial


Seguir a ejercicios resueltos de vectores
Volver a vectores
Volver a home
© 2024 - Acerca de Física Práctica - Reportar un error